Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
medrxiv; 2023.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2023.06.29.23292056

RESUMEN

Infections can lead to persistent or long-term symptoms and diseases such as shingles after varicella zoster, cancers after human papillomavirus, or rheumatic fever after streptococcal infections(1,2). Similarly, infection by SARS-CoV-2 can result in Long COVID, a condition characterized by symptoms of fatigue and pulmonary and cognitive dysfunction(3-5). The biological mechanisms that contribute to the development of Long COVID remain to be clarified. We leveraged the COVID-19 Host Genetics Initiative(6,7) to perform a genome-wide association study for Long COVID including up to 6,450 Long COVID cases and 1,093,995 population controls from 24 studies across 16 countries. We identified the first genome-wide significant association for Long COVID at the FOXP4 locus. FOXP4 has been previously associated with COVID-19 severity(6), lung function(8), and cancers(9), suggesting a broader role for lung function in the pathophysiology of Long COVID. While we identify COVID-19 severity as a causal risk factor for Long COVID, the impact of the genetic risk factor located in the FOXP4 locus could not be solely explained by its association to severe COVID-19. Our findings further support the role of pulmonary dysfunction and COVID-19 severity in the development of Long COVID.


Asunto(s)
Infecciones Estreptocócicas , Enfermedades Pulmonares , Neoplasias , Infecciones por Papillomavirus , COVID-19 , Trastornos del Conocimiento , Fiebre Reumática
2.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.12.15.20248279

RESUMEN

BackgroundIdiopathic pulmonary fibrosis (IPF) is a complex lung disease, characterized by progressive lung scarring. Severe COVID-19 is associated with substantial pneumonitis and has a number of shared major risk factors with IPF. This study aimed to determine the genetic correlation between IPF and severe COVID-19 and assess a potential causal role of genetically increased risk of IPF on COVID-19 severity. MethodsWe performed a Mendelian randomisation (MR) study for IPF causality in COVID-19. Genetic variants associated with IPF susceptibility (P<5x10-8) in previous genome-wide association studies (GWAS) were used as instrumental variables (IVs). Effect estimates of those IVs on COVID-19 severity were gathered from the GWAS meta-analysis by the COVID-19 Host Genetics Initiative. The genetic correlation between IPF and COVID-19 severity was estimated with linkage disequilibrium (LD) score regression. FindingsWe detected a positive genetic correlation of IPF with COVID-19 severity (rg=0.31 [95% CI 0.04-0.57], P = 0.023). The MR estimates for severe COVID-19 did not reveal any genetic association (OR 1.05, [95% CI 0.92-1.20], P = 0.43). However, outlier analysis revealed that the IPF risk allele rs35705950 at MUC5B had a different effect compared with the other variants. When rs35705950 was excluded, MR results provided evidence that genetically increased risk of IPF has a causal effect on COVID-19 severity (OR 1.21, [95% CI 1.06-1.38], P = 4.24x10-3). Furthermore, the IPF risk-allele at MUC5B showed an apparent protective effect against COVID-19 hospitalization only in older adults (OR 0.86, [95% CI 0.73-1.00], P = 2.99x10-2). InterpretationThe strongest genetic determinant of IPF, rs35705950 at MUC5B, seems to confer protection against COVID-19, whereas the combined effect of all other IPF risk loci seem to confer risk of COVID-19 severity. The observed effect of rs35705950 could either be due to protective effects of mucin over-production on the airways or a consequence of selection bias due to a patient group that is heavily enriched for the rs35705950 T undertaking strict self-isolation. Due to the diverse impact of IPF causal variants on SARS-CoV-2 infection, further investigation is needed to address this apparent paradox between variance at MUC5B and other IPF genetic risk factors. FundingNovo Nordisk Foundation and Oak Foundation.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA